quarta-feira, 13 de dezembro de 2017

ESTRUTURAS ESTRANHAS NA NEBULOSA DE SATURNO


A espectacular nebulosa planetária NGC 7009, ou a Nebulosa de Saturno como é chamada, surge da escuridão como uma série de bolhas estranhamente formadas, iluminadas em gloriosos tons rosa e azuis. Esta imagem colorida foi capturada pelo poderoso instrumento MUSE no Very Large Telescope (VLT) da ESO, como parte de um estudo que mapeou o pó dentro de uma nebulosa planetária pela primeira vez. O mapa - que revela uma riqueza de estruturas intrincadas no pó, incluindo conchas, um halo e uma curiosa característica semelhante a uma onda - ajudará os astrônomos a entender como as nebulosas planetárias desenvolvem suas estranhas formas e simetrias.
A Nebulosa de Saturno está localizada a aproximadamente 5000 anos-luz de distância na constelação de Aquário (The Water Bearer). Seu nome deriva de sua forma estranha, que se assemelha ao planeta anelado favorito de todos, visto de ponta.
Mas na verdade, as nebulosas planetárias não têm nada a ver com os planetas. A Nebulosa de Saturno era originalmente uma estrela de baixa massa, que se expandiu para um gigante vermelho no final de sua vida e começou a perder suas camadas externas. Este material foi soprado por fortes ventos estelares e energizado por radiação ultravioleta do núcleo estelar quente deixado atrás, criando uma nebulosa circunstelar de pó e gás quente de cores vivas. No coração da Nebulosa de Saturno encontra-se a estrela condenada, visível nessa imagem, que está em processo de se tornar uma anã branca .
Para entender melhor como as nebulosas planetárias são moldadas em formas tão estranhas, uma equipe internacional de astrônomos liderada por Jeremy Walsh da ESO usou o Explorador Espectroscópico de Unidades Múltiplas (MUSE) para contemplar os velos empoeirados da Nebulosa de Saturno. O MUSE é um instrumento instalado em um dos quatro Telescópios da Unidade do Very Large Telescope no Observatório Paranal da ESO no Chile. É tão poderoso porque não apenas cria uma imagem, mas também reúne informações sobre o espectro - ou intervalo de cores - da luz do objeto em cada ponto da imagem.
A equipe usou a MUSE para produzir os primeiros mapas ópticos detalhados do gás e do pó distribuídos por uma nebulosa planetária. A imagem resultante da Nebulosa de Saturno revela muitas estruturas intrincadas, incluindo uma concha interna elíptica, uma concha externa e um halo. Também mostra dois fluxos previamente formados que se estendem de qualquer extremidade do eixo longo da nebulosa, terminando em ansae brilhante (latino para "alças").
Curiosamente, a equipe também encontrou uma característica semelhante à onda no pó, o que ainda não é totalmente compreendido. A poeira é distribuída por toda a nebulosa, mas há uma queda significativa na quantidade de poeira na borda do invólucro interno, onde parece estar sendo destruído. Existem vários mecanismos potenciais para essa destruição. O invólucro interno é essencialmente uma onda de choque de expansão, por isso pode estar esmagando os grãos de poeira e esvaziando-os, ou produzindo um efeito de aquecimento extra que evapora o pó.
Mapear as estruturas de gás e poeira dentro das nebulosas planetárias ajudará a entender seu papel nas vidas e mortes de estrelas de baixa massa, e também ajudará os astrônomos a entender como as nebulosas planetárias adquirem suas formas estranhas e complexas.
Mas as capacidades da MUSE se estendem muito além das nebulosas planetárias. Este instrumento sensível também pode estudar a formação de estrelas e galáxias no Universo primitivo, bem como mapear a distribuição de matéria escura em galaxy clusters no Universo próximo. MUSE também criou o primeiro mapa 3D dos Pilares da Criação na Nebulosa da Águia ( eso1518 ) e criou um acidente cósmico espetacular em uma galáxia próxima ( eso1437 ).

segunda-feira, 11 de dezembro de 2017

UM PAR DE BURACOS NEGROS SUPERMASSIVOS FOTO-BOMBARAM NA GALÁXIA DE ANDRÔMEDA


Os astrônomos pensaram anteriormente que esta fonte, conhecida como J0045 + 41, fazia parte da Andromeda, que fica a cerca de 2,5 milhões de anos-luz da Terra.
Novos dados de Chandra e dados ópticos baseados no solo revelam que o J0045 + 41 é realmente 1000 vezes mais distante.
As informações mais recentes sugerem que J0045 + 41 contém um par de buracos negros gigantes orbitando um ao outro extremamente próximo.
Uma fonte intrigante foi descoberta atrás da galáxia Andromeda próxima, usando dados do Observatório de raios-X Chandra da NASA e telescópios ópticos terrestres. Anteriormente pensado para ser parte da galáxia vizinha da Via Láctea, a nova pesquisa mostra que esta fonte é realmente um objeto muito distante a 2,6 bilhões de anos-luz de distância que está atuando como uma bomba cósmica, conforme relatado em nosso comunicado de imprensa .
Este gráfico mostra os dados Chandra (azul na inserção) da fonte conhecida como LGGS J004527.30 + 413254.3 (J0045 + 41 para breve) no contexto de imagens ópticas da Andromeda do Telescópio Espacial Hubble. Na imagem inserida, o norte está para cima e, na imagem grande, o norte está na parte inferior direita. Andromeda, também conhecida como M31, é uma galáxia espiral localizada a cerca de 2,5 milhões de anos-luz da Terra.
Ainda mais intrigante do que a grande distância de J0045 + 41, é provável que contenha um par de buracos negros gigantes em órbita perto um do outro. A massa total estimada para esses dois buracos negros supermassivos é cerca de duzentos milhões de vezes a do nosso Sol.
J0045 + 41 foi anteriormente classificado como um tipo diferente de objeto - um par de estrelas em órbita - quando se pensava que ocupava Andromeda. Uma equipe de pesquisadores combinou os dados de Chandra X-ray com espectros do telescópio Gemini North no Havaí, fornecendo evidências de que J0045 + 41 continha pelo menos um buraco negro supermassivo. Usando dados dos telescópios Palomar Transient Factory na Califórnia, a equipe encontrou variações repetidas na luz de J0045 + 41, um ponteiro para a presença de dois buracos negros gigantes em órbita.
Os pesquisadores estimam que os dois buracos negros putativos orbitam uns aos outros com uma separação de apenas algumas centenas de vezes a distância entre a Terra e o Sol. Isso corresponde a menos de um centésimo de um ano-luz. Em comparação, a estrela mais próxima do nosso Sol está a cerca de quatro anos-luz de distância.
Esse sistema poderia ser formado como uma conseqüência da fusão, bilhões de anos antes, de duas galáxias que continham um buraco negro supermassivo. Na sua separação próxima atual, os dois buracos negros são inevitavelmente aproximados, pois eles emitem ondas gravitacionais .
Um documento descrevendo esse resultado foi aceito para publicação no The Astrophysical Journal e uma pré-impressão está disponível on-line . O Centro de Vôos Espaciais Marshall da Nasa em Huntsville, Alabama, administra o programa de Chandra para a Direcção da Missão de Ciências da NASA em Washington. O Smithsonian Astrophysical Observatory em Cambridge, Massachusetts, controla a ciência e operações de vôo de Chandra.

sábado, 9 de dezembro de 2017

VOYAGER 1 ACIONA SEUS PROPULSORES APÓS 37 ANOS SEM USO

Ilustração artística da sonda Voyager 1
A nave espacial Voyager 1, da NASA, acordou seus propulsores pela primeira vez após ficar décadas sem usá-los...
Os quatro propulsores da Voyager 1, chamados TCM (manobra de correção de trajetória), não eram usados desde novembro de 1980, quando realizou seu último sobrevoo planetário - um encontro épico com o planeta Saturno. Recentemente, no dia 28 de novembro de 2017, operadores da missão realizaram um teste para verificar se os propulsores ainda funcionavam... E tudo correu de forma maravilhosa, disseram autoridade da NASA.
"A equipe da Voyager ficava cada vez mais entusiasmada conforme os propulsores guiavam a sonda a cada quilômetro percorrido", disse Todd Barber, engenheiro de propulsão do Laboratório de Propulsão a Jato, da NASA. "O clima foi uma mistura de ceticismo, alívio e alegria ao testemunhar os propulsores trabalharem como se nenhum tempo tivesse passado."
Como podemos perceber, a equipe da missão não ligou os propulsores da nave apenas por curiosidade ociosa. A sonda Voyager 1 vem usado constantemente seus propulsores padrão que a coloca numa posição adequada para que sua comunicação com a Terra ocorra de forma favorável (mirando sua antena em nossa direção). Mas o desempenho desses propulsores automáticos têm deixado a desejar há cerca de três anos, então os membros da missão decidiram apelar para algo mais potente, mas que estava dormente há muito tempo...
Não havia garantia alguma de que os testes iriam funcionar. Já faziam 37 anos que esses motores não eram ligados. Além disso, eles foram projetados para operar de forma contínua, e não para disparar rajadas curtas. Foi um momento de muita tensão na sala de controle da missão.
Voyager 1 aciona propulsores apos 37 anos sem uso
Ilustração artística da sonda Voyager 1.
Créditos: NASA / JPL-Caltech
Agora que tudo deu certo, o plano é continuar usando os motores TCM para que a missão opere com 100% de satisfação.
"Com os propulsores funcionando mesmo após 37 anos sem uso, podemos ampliar a vida da nave espacial Voyager 1 em dois ou três anos", disse a gerente de projetos da Voyager, Suzanne Dodd.
Apesar dessa empolgação da equipe, e da satisfação de ver os motores TCM operando após um longo período de dormência, eles provavelmente serão aposentados no futuro próximo. Cada um deles exige que um aquecedor funcione, ou seja, energia. Quando a fonte de energia da sonda Voyager 1 estiver muito baixa, ela deverá voltar a ser operada pelos propulsores automáticos. A sonda Voyager 1 é alimentada por um gerador termoelétrico de radioisótopos, ou RTG, que converte o calor gerado pela decomposição radioativa de plutônio-238 em eletricidade.
O Pálido Ponto Azul - Voayger 1 - 6 de junho de 1990
O Pálido Ponto Azul - Voayger 1 - 6 de junho de 1990
A icônica imagem intitulada "O Pálido Ponto Azul", feita pela sonda Voyager 1 em 6 de junho de 1990. Podemos ver a Terra a mais de 6 bilhões de km de distância. Nosso planeta aparece como um pequeno pixel azulado. Créditos: Voyager 1 / NASA
As sondas gêmeas Voyager 1 e Voyager 2 foram lançadas em 1977, com apenas alguma semanas de diferença. A missão delas é a de realizar uma viagem sem precedentes pelo espaço, passando primeiramente pelos planetas gasosos (Júpiter, Saturno, Urano e Netuno). Em agosto de 2012, a sonda Voyager 1 se tornou o primeiro objeto humano a entrar no espaço interestelar. [o site Galeria do Meteorito acompanhou esse momento, e você pode ver nessa matéria de 2012]
A sonda Voyager 2 deve sair dos limites do Sistema Solar em breve, juntando-se a sua irmã nos próximos anos.
A equipe da missão também deverá fazer um teste com os motores TCM da sonda Voyager 2, mas por enquanto, seus propulsores automáticos estão dando conta perfeitamente de seu trabalho... talvez leve alguns anos para que o teste seja realmente necessário.
Imagens: (capa-ilustração/NASA) / Voyager 1 / NASA / JPL-Caltech

quinta-feira, 7 de dezembro de 2017

NINGUÉM NUNCA VIU A PEQUENA NUVEM DE MAGALHÃES COM TANTOS DETALHES

melhor imagem da pequena nuvem de magalhaes
Novo telescópio surpreende com a melhor e mais detalhada imagem da Pequena Nuvem de Magalhães
Utilizando o observatório Australian Square Kilometer Array Pathfinder (ASKAP), os pesquisadores conseguiram registrar a imagem de ondas de rádio mais detalhada da galáxia satélite da Via Láctea chamada Pequena Nuvem de Magalhães.
Esta galáxia anã é cerca de 100 vezes menor do que a Via Láctea, e está a 200 mil anos-luz da Terra. Ela pode ser vista como uma nuvem difusa aqui nos céus do Hemisfério Sul. Agora, o ASKAP mostra a Pequena Nuvem de Magalhães em comprimentos de ondas de rádio - uma visão ardente de aglomerados vermelhos que se assemelham a um pôr-do-sol perturbador em Mordor. Os diferentes tons de vermelho revelam a quantidade de gás de hidrogênio em cada área, medida pela emissão de hidrogênio a 21 centimetros (1420 MHz).
Os átomos de hidrogênio são os blocos de construção que compõem todas as galáxias - onde o gás de hidrogênio se acumula, nascem novas estrelas. Mas uma vez que eles se formam, poderosos ventos estelares destroem átomos de hidrogênio, e isso acontece de forma ainda mais evidente quando as estrelas próximas morrem em explosões de supernova. Por conta disso, o comportamento do hidrogênio pode revelar mais sobre as estruturas de uma galáxia do que suas estrelas ou poeira.
A imagem mostra enormes filamentos gasosos que ultrapassam a borda da galáxia anã, que talvez sejam arremessados quando ela se move em torno do halo da Via Láctea.
A melhor imagem de rádio da Pequena Nuvem de Magalhães - ASKAP
A melhor imagem de rádio da Pequena Nuvem de Magalhães - ASKAP
Vermelho escuro indica regiões com pouco gás de hidrogênio, enquanto o laranja e o branco indicam regiões ricas em hidrogênio.
Créditos: ASKAP / ANU / CSIRO
Esta nova imagem faz parte de um estudo inicial do ASKAP, usando apenas 16 das 36 antenas idênticas de 12 metros. O ASKAP está localizado no remoto Observatório de Radio-Astronomia de Murchison, na Austrália Ocidental, um local ideal para observação de rádio. Embora o telescópio ainda não esteja completo, todos os sistemas principais estão em operação. Os gerentes de projetos esperam concluir a construção em 2018.
Mesmo sendo um resultado obtido de forma parcial, utilizando parte do observatório, a imagem é pelo menos três vezes mais nítida do que a melhor imagem anterior de gás hidrogênio da Pequena Nuvem de Magalhães, obtida pelo Australia Telescope Compact Array. A imagem de ASKAP também possui maior sensibilidade, mostrando características que antes não eram vistas, e abrange uma área maior, permitindo que os pesquisadores estudem a interação da galáxia com seus arredores.
Foram necessárias apenas 33 horas de observação durante três noites para capturar esse novo retrato galático. A melhor imagem anterior do nosso vizinho galático, além de ser três vezes menos nítida, precisou de oito noites de observações, durante as quais os astrônomos tiveram que apontar o telescópio para centenas de pontos separados da galáxia para obter a imagem inteira.
"A área mostrada na imagem é cerca de 100 vezes a área preenchida pela Lua Cheia no céu", diz Naomi McClure-Griffiths, da Universidade Nacional Australiana). "Com ASKAP, nós conseguimos isso em um único quadro." Em comparação, o Jansky Very Large Array no Novo México precisaria observar mais de 500 quadros separados para cobrir essa mesma área.
O ASKAP está preparado para realizar pesquisas de ponta, com nove grandes projetos já em andamento. Ele é também um "teste" para a tecnologia que será implementada no Square Kilometer Array (SKA) - um projeto internacional de $ 1,8 bilhão de dólares que visa construir o maior radiotelescópio do mundo, com mais de 2.000 antenas e uma superfície de coleta combinada de mais de um quilômetro quadrado, dividida entre dois locais na Austrália e África do Sul.
Quando finalmente concluído (o que não deve acontecer antes de 2020), os astrônomos esperam que o SKA atinja importantes objetivos científicos. O SKA ajudará os astrônomos a descobrir como as primeiras estrelas e buracos negros se formam, compreender melhor a evolução da galáxia e a buscar moléculas orgânicas no espaço. E se houver algum sinal de rádio extraterrestre artificial, o SKA também será capaz de captá-lo de forma bastante clara.
Imagens: (capa-ASKAP) / ASKAP / ANU / CSIRO / divulgação

sábado, 25 de novembro de 2017

UMA GIGANTESCA BOLHA CÓSMICA

Uma gigantesca bolha cósmica
Medindo mais de 300 000 anos-luz, três vezes o diâmetro da Via Láctea, esta colorida bolha de gás ionizado é a maior que já foi descoberta. 
A enorme bolha contém 10 galáxias individuais e está situada numa região particularmente densa de um grupo de galáxias chamado COSMOS-Gr30, a 6,5 ​​bilhões de anos-luz da Terra. Destinado devido à sua alta densidade de galáxias, este grupo é extremamente variado - algumas galáxias estão ativamente formando estrelas enquanto outras são passivas; alguns são brilhantes enquanto outros são fracos; Alguns são enormes e outros são pequenos.
Esta bolha recorde foi descoberta e estudada em detalhes graças à incrível sensibilidade do instrumento MUSE , montado no Very Large Telescope da ESO . Operando em comprimentos de onda visíveis, o MUSE combina as capacidades de um dispositivo de imagem com a capacidade de medição de um espectrógrafo, criando uma ferramenta única e poderosa que pode lançar luz em objetos cosmológicos que de outra forma permaneceriam no escuro.
O poderoso olho de MUSE no céu permitiu que os astrônomos compreendessem que esse grande bolso de gás não era puro, mas foi expulso de galáxias, seja durante interações violentas ou por superwinds conduzidos por buracos negros ativos e supernovas. Eles também estudaram como essa magnífica bolha se ionizou. Acredita-se que o gás na área superior (mostrada em azul) foi ionizado por radiação eletromagnética intensa de estrelas recém-nascidas e ondas de choque decorrentes da atividade galáctica. Os astrónomos suspeitam que o núcleo galáctico ativo vermelho violento em direção à parte inferior esquerda da imagem poderia ter rasgado os elétrons de seus átomos.

quinta-feira, 23 de novembro de 2017

AURORAS DINÂMICAS DE RAIOS X EM JÚPITER SÃO INDEPENDENTEMENTE PULSANTES

Novas observações de raios-X mostram que as auroras - luzes do norte ou do sul - em Jupiter se comportam de forma diferente em cada pólo.
Isso torna Jupiter intrigante e ao contrário de Saturno (sem auroras conhecidas) ou da Terra (onde as auroras do norte e do sul se espelham).
Estes últimos achados de raios-X estão desafiando os modelos teóricos atuais que explicam as auroras de Jovian.
Os cientistas esperam combinar os dados de Chandra, XMM-Newton e Juno para saber mais sobre a fonte das auroras de Júpiter.
Intensas luzes do norte e do sul de Júpiter, ou auroras, comportam-se independentemente uns dos outros de acordo com um novo estudo usando Chandra de raios-X da NASA e XMM-Newton da ESA observatórios.
Usando as observações de raios XMM-Newton e Chandra de março de 2007 e maio e junho de 2016, uma equipe de pesquisadores produziu mapas das emissões de raios-X de Jupiter e identificou um ponto quente de raios-X em cada pólo. Cada ponto quente pode cobrir uma área igual a cerca de metade da superfície da Terra.
A equipe descobriu que os pontos quentes tinham características muito diferentes. A emissão de raios-X no pólo sul de Jupiterpulsou consistentemente a cada 11 minutos, mas os raios X vistos a partir do pólo norte foram erráticos, aumentando e diminuindo o brilho - aparentemente independentes da emissão do pólo sul.
Isso torna Jupiter particularmente intrigante. As auroras de raios-X nunca foram detectadas pelos outros gigantes do gás do Sistema Solar, incluindo o Saturno . Jupiter também é diferente da Terra, onde as auroras nos pólos norte e sul de nosso planeta geralmente se espelham porque os campos magnéticos são semelhantes.
Para entender como Júpiter produz suas auroras de raios-X, a equipe de pesquisadores planeja combinar novos e próximos dados de raios X de Chandra e XMM-Newton com informações da missão Juno da NASA, que atualmente está em órbita ao redor do planeta. Se os cientistas podem conectar a atividade de raios X com as mudanças físicas observadas simultaneamente com Juno, elas podem determinar o processo que gera as auroras de Jovian e as auroras de raios X de associação em outros planetas.
Ilustração de Magentosphere
Ilustração de Magentosphere Crédito de ilustração: NASA / CXC / M.Weiss
Uma teoria de que as observações de raios X e Juno podem ajudar a provar ou refutar é que as auroras de raios-X de Jupiter são causadas por interações na fronteira entre o campo magnético de Júpiter, que é gerado por correntes elétricas no interior do planeta e o vento solar , um fluxo de alta velocidade de partículas que fluem do Sol. As interações entre o vento solar e o campo magnético de Jupiter podem fazer com que o último vibre e produza ondas magnéticas. As partículas carregadas podem navegar nessas ondas e ganhar energia. As colisões dessas partículas com a atmosfera de Júpiter produzem brilhantes flashes de raios-X observados por Chandra e XMM. Dentro desta teoria, o intervalo de 11 minutos representaria o tempo para uma onda viajar por uma das linhas de campo magnético de Jupiter.
A diferença de comportamento entre os pólos norte e sul de Jovian pode ser causada pela diferença de visibilidade dos dois pólos. Como o campo magnético de Júpiter está inclinado, podemos ver muito mais a aurora do norte do que a aurora do sul. Portanto, para o pólo norte, podemos observar regiões onde o campo magnético se conecta a mais de um local, com vários tempos de viagem diferentes, enquanto que para o pólo sul só podemos observar regiões onde o campo magnético se conecta a um local. Isso faria com que o comportamento do pólo norte pareça errático em relação ao pólo sul.
Uma questão maior é como Júpiter dá as partículas em sua magnetosfera(o reino controlado pelo campo magnético de Júpiter), as energias enormes precisavam fazer raios-X? Algumas das emissões de raios-X observadas com Chandra só podem ser produzidas se Jupiter acelerar os íons de oxigênio para energias tão elevadas que, quando colidem violentamente com a atmosfera, todos os oito elétrons são arrancados. Os cientistas esperam determinar o impacto dessas partículas, que atravessam os pólos do planeta a milhares de quilômetros por segundo, têm no próprio planeta. Essas partículas de alta energia afetam o clima de Jovian e a composição química de sua atmosfera? Eles podem explicar as temperaturas anormalmente altas encontradas em certos lugares na atmosfera de Júpiter? Estas são as perguntas que Chandra, XMM-Newton e Juno poderão ajudar a responder no futuro.

terça-feira, 21 de novembro de 2017

MACS J1149.5+2233: UMA FUSÃO DE AGLOMERADOS GÁLÁTICOS

MACS J1149.5 + 2233
O Frontier Fields é um projeto que combina longas observações de vários telescópios de galaxy clusters.
Os conjuntos de galáxias contêm até milhares de galáxias e vastos reservatórios de gás quente embutidos em nuvens maciças de matéria escura.
Os dados de Chandra, Hubble, Spitzer e outros telescópios fazem parte do projeto Frontier Fields.
Este conjunto de galáxias Frontier Fields, conhecido como MACS J1149.5 + 2233, está localizado a cerca de 5 bilhões de anos-luz da Terra.
MACS J1149.5 + 2233 (MACS J1149 para abreviar) é um sistema de fusão de aglomerados de galáxias localizados a cerca de 5 bilhões de anos-luz da Terra. Este cluster de galáxias foi um dos seis que foram estudados como parte do projeto "Frontier Fields". Este esforço de pesquisa incluiu longas observações de cachos de galáxias com telescópios poderosos que detectaram diferentes tipos de luz, incluindo o Observatório de raios-X Chandra da NASA .
Os astrônomos estão usando os dados dos Campos de Fronteira para saber mais sobre como os aglomerados de galáxias crescem através de colisões. Os conjuntos de galáxias são enormes coleções de centenas ou mesmo milhares de galáxias e vastos reservatórios de gás quente embutidos em nuvens maciças de matéria escura , material invisível que não emite ou absorve luz, mas pode ser detectado através de seus efeitos gravitacionais.

Esta nova imagem do MACS J1149 combina raios X de Chandra (azul difuso), dados ópticos do Hubble (vermelho, verde, azul) e emissão de rádio da Very Large Array (rosa). A imagem tem cerca de quatro milhões de anos-luz à distância do MACS J1149.
Os dados de Chandra revelam gás nos grupos de fusão com temperaturas de milhões de graus. Os dados ópticos mostram galáxias nos aglomerados e outras galáxias mais distantes que se encontram atrás dos clusters. Algumas dessas galáxias de fundo são altamente distorcidas devido à lente gravitacional , à flexão da luz por objetos maciços. Este efeito também pode ampliar a luz desses objetos, permitindo que os astrônomos estudem galáxias de fundo que de outra forma seriam muito fracas para detectar. Finalmente, as estruturas nos dados de rádio traçam enormes ondas de choque e turbulência. Os choques são semelhantes aos booms sônicos e são gerados pelas fusões de pequenos grupos de galáxias.
O Centro de Vôos Espaciais Marshall da Nasa em Huntsville, Alabama, administra o programa de Chandra para a Direcção da Missão de Ciências da NASA em Washington. O Smithsonian Astrophysical Observatory em Cambridge, Massachusetts, controla a ciência e operações de vôo de Chandra.

domingo, 19 de novembro de 2017

MISSÕES DA NASA CAPTAM A PRIMEIRA LUZ DE UM EVENTO DE ONDA GRAVITACIONAL


Os astrônomos usaram Chandra para fazer a primeira detecção de raios-X de uma fonte de onda gravitacional.
Esta é a primeira evidência de que as conseqüências de eventos de ondas gravitacionais também podem emitir raios-X.
Os dados indicam que este evento foi a fusão de duas estrelas de nêutrons que produziram um jato apontando para longe da Terra.
Chandra fornece o link observacional ausente entre rajadas de raios gama (GRBs) e ondas gravitacionais de fusões de estrelas de nêutrons.
Os astrônomos usaram o Observatório de raios-X Chandra da NASA para fazer a primeira detecção de raios-X de uma fonte de onda gravitacional. Chandra foi um dos vários observatórios para detectar as conseqüências desse evento de onda gravitacional , o primeiro a produzir um sinal eletromagnético de qualquer tipo. Esta descoberta representa o início de uma nova era na astrofísica.
A fonte de onda gravitacional, GW170817, foi detectada com o Observatório de Onda Gravitacional de Interferômetro Laser avançado, ou LIGO, às 8:41 da EDT na quinta-feira, 17 de agosto de 2017. Dois segundos depois, o Monitor de Burmografia de Fermi (GBM) da NASA detectou um fraco pulso de raios gama. Mais tarde naquela manhã, cientistas da LIGO anunciaram que GW170817 tinha as características de uma fusão de duas estrelas de nêutrons .
Durante a noite de 17 de agosto, várias equipes de astrônomos que utilizam telescópios terrestres relataram a detecção de uma nova fonte de luz óptica e infravermelha na galáxia NGC 4993, uma galáxia localizada a cerca de 130 milhões de anos-luz da Terra. A posição da nova fonte óptica e infravermelha concordou com a posição do Fermi e as fontes de ondas gravitacionais. Este último foi refinado combinando informações da LIGO e sua contraparte européia, Virgo.
Durante as duas semanas seguintes, Chandra observou NGC 4993 e a fonte GW170817 quatro vezes separadas. Na primeira observação realizada em 19 de agosto (Pesquisador principal: Wen-fai Fong da Northwestern University em Evanston, Illinois), não foram detectados raios-X no local de GW170817. Esta observação foi obtida notavelmente rápida, apenas 2,3 dias após a origem gravitacional ter sido detectada.
Em 26 de agosto, Chandra observou GW170817 novamente e desta vez, os raios-X foram vistos pela primeira vez (PI: Eleonora Troja do Goddard Space Flight Center em Greenbelt, MD e Universidade de Maryland, College Park). Esta nova fonte de raios-X estava localizada na posição exata da fonte óptica e infravermelha.
"Esta detecção de Chandra é muito importante porque é a primeira evidência de que fontes de ondas gravitacionais também são fontes de emissão de raios-X", disse Troja. "Esta detecção está nos ensinando uma grande quantidade de informações sobre a colisão e seu remanescente. Ela ajuda a nos dar uma confirmação importante de que rajadas de raios gama são transmitidas para jatos estreitos".
O gráfico que acompanha mostra tanto a detecção de Chandra como o limite superior de raios X de GW170817 em 19 de agosto e a detecção subseqüente em 26 de agosto, nos dois lados da caixa de inserção. O painel principal do gráfico é a imagem do telescópio espacial Hubble da NGC 4993, que inclui dados obtidos em 22 de agosto. A fonte óptica variável correspondente ao GW170817 está localizada no centro do círculo na imagem Hubble.
Chandra observou GW170817 novamente em 1º de setembro (PI Eleonora Troja) e 2 de setembro (PI: Daryl Haggard da Universidade McGill em Montreal, Canadá), quando a fonte parece ter aproximadamente o mesmo nível de brilho de raio X que a observação de 26 de agosto.
As propriedades do brilho do raio X da fonte com o tempo correspondem ao previsto por modelos teóricos de uma pequena explosão de raios gama (GRB). Durante esse evento, um raio de raios X e raios gama é gerado por um jato estreito, ou feixe, de partículas de alta energia produzidas pela fusão de duas estrelas de nêutrons. A não detecção inicial por Chandra seguida pelas detecções mostra que a emissão de raios-X de GW170817 é consistente com o pós-brilho de um GRB visto "fora do eixo", ou seja, o jato não apontando diretamente para a Terra. Esta é a primeira vez que os astrônomos já detectaram um GRB curto fora do eixo.
"Depois de algum pensamento, percebemos que a não detecção inicial pela Chandra combina perfeitamente com o que esperamos", disse Fong. "O fato de que não vimos nada primeiro nos dá um controle muito bom na orientação e geometria do sistema".

Crédito de ilustração: NASA / CXC / K.DiVona
Os pesquisadores pensam que inicialmente o jato era estreito , com Chandra observando-o do lado. No entanto, com o passar do tempo, o material no jato diminuiu e ampliou-se quando ele bateu no material circundante, fazendo com que a emissão de raios-X aumente quando o jato entrou em vista direta. Os dados Chandra permitem aos pesquisadores estimar o ângulo entre o jato e a nossa linha de visão. As três diferentes equipes de observação de Chandra avaliam ângulos entre 20 e 60 graus. Observações futuras podem ajudar a refinar essas estimativas.
A detecção deste GRB curto fora do eixo ajuda a explicar a fraqueza do sinal de raios gama detectado com Fermi GBM para uma explosão tão próxima. Como nossos telescópios não estão olhando diretamente para o barril do jato, como eles têm para outros GRBs curtos, o sinal de raios gama é muito mais fraco.
A luz óptica e infravermelha provavelmente é causada pelo brilho radioativo quando elementos pesados , como ouro e platina, são produzidos no material ejetado pela fusão de estrelas de nêutrons. Este brilho foi previsto para ocorrer após a fusão das estrelas de nêutrons
Ao detectar um GRB curto fora do eixo no local do brilho radioativo, as observações de Chandra fornecem o link observacional ausente entre GRBs curtos e ondas gravitacionais de fusões de estrelas de nêutrons.
Esta é a primeira vez que os astrônomos têm todas as informações necessárias para a fusão das estrelas de nêutrons - a partir da produção de ondas gravitacionais seguidas de sinais em raios gama, raios-X, luz óptica e infravermelha, que todos concordam com previsões para um GRB curto visto fora do eixo.
"Este é um grande negócio porque é um nível de conhecimento inteiramente novo", disse Haggard. "Esta descoberta nos permite ligar esta fonte de onda gravitacional a todo o resto da astrofísica, estrelas, galáxias, explosões, crescendo enormes buracos negros e, claro, fusões de estrelas de neutrões".
Os trabalhos que descrevem esses resultados foram aceitos para publicação na Nature ( Troja et al. ) E The Astrophysical Journal Letters ( Haggard et al., E Margutti et al. ). Raffaella Margutti é colaboradora da Fong's, também do Northwestern.


sexta-feira, 17 de novembro de 2017

ESTRANHO OBJETO INTERESTELAR OBSERVADO NO SISTEMA SOLAR

objeto interestelar A-2017-U1
Objeto interestelar A-2017-U1 O primeiro de muitos que serão detectados no futuro?
Um visitante interestelar inesperado parece ter passado bem aqui perto, no nosso Sistema Solar, e essa pode ser a primeira vez que detectamos algo assim.
"Esperamos décadas para esse dia chegar", disse Paul Chodas, gerente do Programa NEO (que monitora Objetos Próximos da Terra) da NASA. "Há muito tempo se falava que cometas e asteroides poderiam se mover entre duas estrelas, e ocasionalmente passar pelo Sistema Solar, mas essa é a primeira vez que detectamos. Até agora, tudo indica que trata-se de um objeto interestelar, mas são necessários mais dados para confirmar isso."
O objeto intitulado A/2017 U1, foi detectado em 19 de outubro por pesquisadores utilizando o observatório Pan-STARRS, no Havaí. E ele está numa velocidade altíssima, a cerca de 92.000 km/h. Astrônomos ao redor do globo estão rapidamente apontando seus telescópios para a estranha rocha espacial. Assim que os dados forem analisados, poderemos, quem sabe, descobrir um pouco mais sobre sua origem, e até sua composição.
Abaixo, podemos ver uma ilustração do nosso Sistema Solar e as órbitas dos planetas junto com a órbita do mais novo visitante:
Orbita objeto A-2017-U1 - Brooks Bays SOEST Publication Services - UH Institute for Astronomy
Orbita objeto A-2017-U1 - Brooks Bays SOEST Publication Services - UH Institute for Astronomy
Orbita do objeto A/2017 U1 durante sua passagem pelo Sistema Solar.
Créditos: Brooks Bays SOEST Publication Services / UH Institute for Astronomy
A/2017 U1 tem cerca de 400 metros de diâmetro, e de acordo com os pesquisadores, sua órbita hiperbólica é o que mais chamou a atenção. A sublimação de um cometa, ou a liberação de gases pode desviá-lo de sua rota principal, mas esse não parece ser o caso. Algumas teorias foram sugeridas, porém, a mais plausível é de que isso veio de outro sistema estelar.
Ainda não está claro o que é esse estranho nômade. Quando descoberto, os pesquisadores acreditaram que A/2017 U1 era um cometa, e por isso ganhou o nome de C/2017 U1. Mas nenhuma evidência de liberação de gases ou de uma coma (pequena atmosfera cometária) foi encontrada. Portanto, ele voltou a ser designado como um "asteroide". Mas será mesmo?
Matthew Holman, diretor do Minor Planet Center em Massachussets (organização responsável pela coleta de dados de asteroides e cometas no Sistema Solar) ainda suspeita que A/2017 U1 é composto majoritariamente por gelo e não por rochas. Isso se deve ao fato de que, um objeto que é arremessado de um sistema para outro é mais provável ser um daqueles que se formou bem distante de sua estrela-mãe, numa região onde os objetos são compostos basicamente por gelo sujo. "E os cometas nem sempre apresentam comas", lembra Holman. "As comas surgem quando o cometa se aproxima do Sol e seu material começa a sublimar."
Imagem liberada pela NASA do objeto A-2017-U1
Imagem liberada pela NASA do objeto A/2017 U1. Créditos: NASA
A/2017 U1 está traçando uma rota praticamente perpendicular a eclíptica - plano orbitado pelos oito planetas do nosso sistema. 
O estranho objeto cruzou o plano no dia 2 de setembro, passando por dentro da órbita de Mercúrio, e depois fez sua máxima aproximação com o Sol.
No dia 14 de outubro, A/2017 U1 fez sua máxima aproximação com a Terra, chegando a 24 milhões de quilômetros da superfície - o equivalente a 60 vezes a distância da Lua.
Depois da "estilingada gravitacional" ocorrida durante sua passagem próxima do Sol, ele acelerou ainda mais! O objeto está agora rumo ao espaço interestelar numa velocidade aproximada de 156.400 km/h, na direção da constelação de Pegasus.
Por se tratar do provável primeiro objeto interestelar já detectado, a União Astronômica Internacional deverá estabelecer uma nova regra de nomeação. Até lá, continuaremos chamando-o de A/2017 U1.
Sendo esse visitante um objeto interestelar, provavelmente existem muitos outros fazendo algo parecido neste exato momento... Então como fazemos para detectá-los com mais facilidade? E mais: "por ter se formado (provavelmente) em outro sistema estelar, sua composição poderia ser relativamente diferente?"... E se a panspermia estiver correta, a vida de um sistema poderia estar sendo semeada não apenas entre seus planetas, como também em outras estrelas?...
Imagens: (capa-ilustração) / NASA / Brooks Bays SOEST Publication Services / UH Institute for Astronomy

quarta-feira, 15 de novembro de 2017

OUTRO PLANETA PODE ESTAR ORBITANDO A ESTRELA PRÓXIMA CENTAURI

outro planeta pode estar orbitando proxima centauri
Além d a estrela mais próxima do Sol pode ter outros habitantes em seu sistema que agora, parece ser mais complexo do que o previsto...e Proxima b,
Em 2016 foi anunciada a descoberta de Proxima b, um planeta que orbita a estrela mais próxima do nosso Sol, Proxima Centauri. Agora, astrônomos acreditam que o planeta Proxima b seja apenas a ponta do iceberg...
Uma equipe de astrônomos, liderada por Guillem Anglada, do Instituto de Astrofísica da Andaluzia, Espanha, estudou Proxima Centauri usando o observatório ALMA, no Chile. Eles focaram Proxima Centauri por mais de 20 horas seguidas, a fim de captar o máximo de luz e consequentemente, a maior quantidade de informações possível... O que foi visto? Um gigantesco anel de poeira ao redor da estrela, além de outros possíveis anéis adicionais. Mas algo ainda mais interessante chamou a atenção dos astrônomos: Proxima b pode não estar sozinho.
Proxima Centauri é uma estrela pequena e fria, portanto seu sistema é mais compacto. Proxima b orbita sua estrela numa distância de apenas 0,05 UA (1 Unidade Astronômica é igual a distância média entre a Terra e o Sol). Para se ter uma ideia, Mercúrio (o planeta mais interno do nosso sistema) orbita o Sol a uma distância de 0.39 UA. Já o anel de poeira de Proxima Centauri está mais longe, entre 1 e 4 UA.
O anel de poeira de Proxima Centauri se parece com o Cinturão de Kuiper - um anel de poeira e rochas nos confins do Sistema Solar, a mais de 40 UA do Sol. Apesar de possuir membros como Plutão e Eris, o Cinturão de Kuiper é composto também por pequenos grãos oriundos de colisões ocorridas por bilhões de anos. O anel de Proxima Centauri também possui uma composição semelhante, assim como temperatura média equivalente ao anel de Kuiper.
Um grande planeta poderia ter se formado na região do Cinturão de Kuiper, porém, devido as interações gravitacionais de Netuno, o material não pôde se aglutinar, permanecendo sempre como um grande anel de poeira. Essa pode ser a mesma história em Proxima Centauri.
Proxima Centauri
Proxima Centauri Imagem mostra a estrela Alpha Centauri e circulada, está Proxima Centauri,
a estrela mais próxima do nosso Sistema Solar, a apenas 4.2 anos-luz de distância.
Créditos: Digitized Sky Survey 2 / Davide De Martin / Mahdi Zamani
"A poeira em torno de Proxima é importante", diz Anglada. "Após a descoberta do planeta terrestre, Proxima b, é a primeira indicação da presença de um sistema planetário elaborado, e não apenas de um único planeta em torno da estrela mais próxima do nosso Sol".
Também foi detectada uma assimetria no anel de poeira de Proxima Centauri, com uma distância média de 1.6 UA, o que sugere a presença de um planeta.
Os astrônomos também encontraram evidências de um segundo cinturão de poeira ainda mais frio, a cerca de 30 UA da estrela. Com se não bastasse, a equipe também sugeriu que poderia haver um outro anel de poeira mais quente, a cerca de 0.5 UA. Outros anéis de poeira semelhantes já foram detectados ao redor de outras estrelas usando o telescópio Herschel, mas os astrônomos ainda buscam explicações para sua existência.
Mas isso tudo é apenas o começo. "Estes primeiros resultados mostram que o observatório ALMA pode detectar estruturas de poeiras em torno de Proxima Centauri", diz o co-autor Pedro Amado, do Instituo de Astrofísica de Andaluzia, na Espanha. "Outras observações nos darão uma imagem mais detalhada do sistema planetário de Proxima".
Provavelmente, nosso vizinho estelar nos presenteará com novidades nos próximos anos!
Imagens: (capa-ilustração/ESO/M. Kornmesser) / Digitized Sky Survey 2 / Davide De Martin / Mahdi Zamani

sábado, 11 de novembro de 2017

A NUVEM MOLECULAR ESCURA BARNARD 68


Onde foram parar todas as estrelas? O que normalmente era considerado como sendo um buraco no céu, hoje é conhecido pelos astrônomos como uma nuvem molecular escura. 
Aqui, uma alta concentração de poeira e gás molecular absorve praticamente toda a luz visível emitida pelas estrelas de fundo. Isso faz com que o interior das nuvens moleculares sejam considerados um dos lugares mais frios e mais isolados do universo. Uma das nebulosas escuras de absorção mais notáveis, é a mostrada nessa imagem que fica na constelação de Ophiuchus, e é conhecida como Barnard 68. Nenhuma estrela é visível no centro da nebulosa escura indicando que a Barnard 68 é relativamente próxima, algumas medidas a colocam a cerca de 500 anos-luz de distância e com meio ano-luz de diâmetro. Não se sabe exatamente como as nuvens moleculares como a Barnard 68 se formam, mas o que se sabe é que essas nuvens moleculares são locais bem prováveis para a formação de novas estrelas. De fato, a Barnard 68 é provavelmente um local que deve colapsar e formar uma nova estrela. É possível olhar através da nuvem molecular na luz infravermelha.
Fonte:
https://apod.nasa.gov/

terça-feira, 7 de novembro de 2017

SONDA JUNO REGISTRA JÚPITER, IO E EUROPA


Essa imagem que teve suas cores realçadas mostra Júpiter e dois de seus maiores satélites naturais, Io e Europa. A imagem foi registrada pela sonda Juno, enquanto realizava seu oitavo sobrevoo pelo Gigante Gasoso.
A imagem foi feita no dia 1 de Setembro de 2017, às 19:14, hora de Brasília. No momento em que a imagem foi feita, a sonda estava a cerca de 27516 km de distância do topo das nuvens de Júpiter, na latitude de -49.372 graus.
Localizado mais próximo do planeta, o satélite Galileano, Io, pode ser visto a uma distância de 481000 quiilômetros e com uma escala espacial de 324 km/pixel. À esquerda é possível ver Europa, a uma distância de 730000 quilômetros e com uma escala espacial de 492 km/pixel.
O cientista cidadão Roman Tkachenko processou a imagem mostrada acima usando dados da câmera JunoCam da sonda Juno.
O Laboratório de Propulsão a Jato da NASA, gerencia a missão da sonda Juno para o principal pesquisador da missão, Scott Bolton do Southwest Research Institute, em San Antonio. A Juno é parte do New Frontiers Program da NASAS que é gerenciado no Marshall Space Flight Center da NASA em Huntsville, no Alabama, para o Science Mission Directorate da NASA. A empresa Lockheed Martin Space Systems, em Denver, no Colorado, construiu a sonda. O Caltech, em Pasadena, na Califórnia, gerencia o JPL para a NASA.

Fonte
.jpl.nasa.gov

domingo, 5 de novembro de 2017

EM QUESTÃO DE GALÁXIAS O TAMANHO PODE ENGANAR


Quando falamos de galáxias, o tamanho pode nos levar a conclusões um pouco equivocadas. Algumas das maiores galáxias do universo, estão dormentes, enquanto que algumas galáxias anãs, como a ESO 553-46, mostrada acima numa bela imagem feita pelo Telescópio Espacial Hubble, podem produzir estrelas numa taxa muito elevada. De fato, a ESO 553-46 tem uma das maiores taxas de formação de estrelas das 1000 galáxias mais próximas da Via Láctea.
A galáxia apresenta aglomerados de estrelas quente e jovens que banham a galáxia, e estão queimando com forte brilho azulado. A intensa radiação que essas estrelas produzem podem fazer com que o gás ao redor literalmente acenda e é esse gás que aparece vermelho na imagem do Hubble. A pequena massa, e a coloração distinta das galáxias desse tipo, faz com que os astrônomos prontamente as classifiquem como Anãs Azuis Compactas, ou do inglês, BCD.
Sem um núcleo claro ou com estruturas presentes nas galáxias maiores como a Via Láctea, as BCDs, como a ESO 553-46 são na verdade compostas de muitos aglomerados de estrelas que ficam unidos pela gravidade. Sua composição química é interessante para os astrônomos, já que elas possuem relativamente pouca poeira e poucos elementos mais pesados que o hélio, que são produzidos em estrelas e distribuídos pelo meio intergaláctico pelas explosões de supernovas. Essas condições são muito similares àquelas que existiam no universo primordial, quando as primeiras galáxias se formaram.
Fonte:
http://www.spacetelescope.org/

sexta-feira, 3 de novembro de 2017

A BELA E INCOMUM AHUNA MONS EM CERES

O O que criou essa montanha pouco comum? Essa aí é a Ahuna Mons, e é a maior montanha conhecida do planeta anão Ceres do Sistema Solar, que orbita o Sol no Cinturão Principal de Asteroides entre as órbitas de Marte e Júpiter. 
A Ahuna Mons, não é parecida com nada que a humanidade viu antes. Isso por uma razão, seus taludes são decorados não com antigas crateras, mas sim com estruturas raiadas jovens. Uma hipótese para explicar isso, é que a Ahuna Mons é um vulcão de gelo formado pouco depois de um grande impacto que aconteceu do lado oposto do planeta anão, e que soergueu o terreno com a propagação das ondas sísmicas. As raias brilhantes podem ser sais com alta reflectância, e portanto são semelhantes a outros materiais encontrados nos famosos pontos brilhantes de Ceres. A imagem acima é uma reconstrução digital feita através dos dados obtidos pela sonda Dawn da NASA que está na órbita de Ceres, e ela teve a altura multiplicada por um fator de 2 para realçar as feições da montanha.
Fonte:
https://apod.nasa.gov/

quarta-feira, 1 de novembro de 2017

OBSERVATÓRIO ESPACIAL HERSCHEL REGISTRA EM INFRAVERMELHO A NEBULOSA DA ALMA


Estrelas estão se formando na Alma da Rainha da Etiópia. Mais especificamente falando, uma grande formação de estrelas chamada de Nebulosa da Alma, pode ser encontrada na direção da constelação da Cassiopeia, que é na mitologia grega é creditada à esposa vã de um rei que a muito tempo atrás governava as terras ao redor do Rio Nilo. A Nebulosa da Alma abriga alguns aglomerados abertos de estrelas, uma grande fonte de emissão de ondas de rádio, conhecida como W5 e grandes bolhas formadas pelos ventos das jovens estrelas massivas. Localizada a cerca de 6500 anos-luz de distância da Terra, a Nebulosa da Alma se expande por cerca de 100 anos luz e normalmente é registrada ao lado da sua vizinha celeste, a Nebulosa do Coração, a IC 1805 (abaixo uma imagem das duas nebulosas lado a lado). A imagem acima, tem detalhes impressionantes e foi feita em algumas bandas da radiação infravermelha pelo Observatório Espacial Herschel.
Fonte:  apod.nasa.gov/apod

segunda-feira, 30 de outubro de 2017

O TERRENO EM FORMA DE LÂMINA NA SUPERFÍCIE DE PLUTÃO


Durante o sobrevoo da sonda New Horizons em Plutão, em Julho de 2015, o terreno em forma de lâmina de Plutão foi mostrado em detalhe nas imagens mais próximas feita pela sonda desse mundo distante. 
A textura incomum pertence a campos de formas e relevo irregulares constituídos na sua maioria de gelo de metano, e encontrados em altitudes extremas perto do equador de Plutão. Gerando sombras dramáticas, as cristas de montanhas altas e parecidas com a lâmina de uma faca, parecem ter sido formadas por sublimação. Nesse processo, o gelo de metano condensado se torna diretamente gás metano sem passar pela fase líquida, e isso deve ter acontecido durante os períodos geológicos em que Plutão era mais quente. Na Terra, a sublimação pode também produzir campos de lençóis de gelo parecidos com lâminas de facas, que são encontrados em platôs de cadeias de montanhas como os Andes. Essas estruturas são conhecidas como penitentes, essas estruturas laminadas são feitas de gelo de água e na Terra possuem somente poucos metros de altura.
Fonte: apod.nasa.gov/apod

sexta-feira, 27 de outubro de 2017

LINDA IMAGEM DA REMANESCENTE DE SUPERNOVA PUPPIS A


Dirigida pela explosão de uma estrela massiva, a remanescente de supernova Puppis A, está se espalhando pelo meio interestelar a sua volta, a cerca de 7000 anos-luz de distância da Terra
A essa distância, essa bela imagem telescópica do campo feita com base em imagens de banda larga e estreita, tem cerca de 60 anos-luz de diâmetro. À medida que a remanescente de supernova (localizada na parte superior direita da imagem) se expande seus filamentos não uniformes e aglomerados de átomos de oxigênio brilham em tonalidades verde azuladas. O hidrogênio e o nitrogênio é mostrado em tonalidades de vermelho. A luz da supernova inicial, disparada pelo colapso de um núcleo de uma estrela, atingiu a Terra a cerca de 3700 anos atrás. A remanescente de supernova Puppis A é na verdade vista através da emissão delimitada de uma supernova mais próxima, porém mais antiga, a remanescente de supernova Vela, localizada perto do plano lotado de estrelas da Via Láctea. Ainda brilhando através de todo o espectro eletromagnético, a remanescente de supernova Puppis A é uma das fontes mais brilhantes do céu em raios-X.
Fonte: apod.nasa.gov

segunda-feira, 23 de outubro de 2017

CIENTISTAS ENCONTRAM PARES DE BURACOS NEGROS GIGANTES E SUPERMASSIVOS


Foram descobertos cinco novos pares de buracos negros supermassivos combinados, combinando dados de diferentes telescópios.
Os modelos prevêem tais buracos negros duplos supermassivos crescentes, mas poucos foram encontrados.
Os pesquisadores usaram as observações Chandra para acompanhar as fusões candidatas promissoras identificadas em estudos ópticos e infravermelhos.
O raio-X e a radiação infravermelha são capazes de penetrar nuvens obscuras de gás e poeira que mantêm esses pares de buracos negros escondidos.
Este gráfico mostra dois dos cinco novos pares de buracos negros supermassivos recentemente identificados por astrônomos usando uma combinação de dados do Observatório de raios-X Chandra da NASA, o Wide-Field Infrared Survey Explorer (WISE), o Telescópio Binocular Grande Baseado no solo no Arizona e o levantamento do Sloan Digital Sky Survey (SDSS) nas próximas Galáxias na APO (MaNGA). Esta descoberta poderia ajudar os astrônomos a entender melhor como os buracos negros gigantes crescem e como eles podem produzir os sinais de onda gravitacional mais fortes do Universo, conforme descrito em nosso comunicado de imprensa .
Cada par contém dois buracos negros supermassivos pesando milhões de vezes a massa do Sol. Esses casais de buraco negro se formaram quando duas galáxias colidiram e se fundiram umas com as outras, forçando seus buracos negros supermassivos próximos. Embora os modelos teóricos tenham previsto que gigantescos binários de buracos negros deveriam ser relativamente abundantes, eles foram difíceis de encontrar.
Ilustração de Double AGN
Ilustração de um par de buracos negros. Crédito: NASA / CXC / A.Hobart
Para descobrir esses últimos pares de buracos negros supermassivos, os astrônomos usaram dados óticos da Sloan Digital Sky Survey (SDSS) - mostrados no painel principal de cada imagem - para identificar galáxias, onde pareceu que havia uma fusão entre duas galáxias menores. Em seguida, eles selecionaram objetos em que a separação entre os centros das duas galáxias nos dados SDSS é inferior a 30 mil anos-luz e o infravermelho cores dos dados WISE correspondem às previstas para um buraco negro supermassivo de rápido crescimento.
Sete sistemas de fusão contendo pelo menos um buraco negro supermassivo foram encontrados com esta técnica. Como a forte emissão de raios-X é uma marca registrada dos buracos negros supermassivos em crescimento, a equipe então observou esses sistemas com Chandra. Eles descobriram que cinco sistemas continham pares de fontes de raios-X que foram separadas por uma distância relativamente pequena (ver inserção para dois exemplos), fornecendo evidências convincentes de que eles contêm dois buracos negros em crescimento ou alimentação, supermassivos.
Tanto os dados de raios X de Chandra quanto as observações WISE infravermelhas sugerem que os buracos negros supermassivos estão enterrados em grandes quantidades de poeira e gás. Como esses dois comprimentos de onda são capazes de penetrar as nuvens obscuras, isso faz com que a combinação de seleção de infravermelhos com o acompanhamento de raios-X seja muito eficaz para encontrar esses pares de buracos negros. A visão nítida de Chandra também é crítica, pois é capaz de resolver cada uma das fontes de raios X nos pares.
Quatro dos duplos candidatos do buraco negro foram relatados em um artigo de Satyapal et al. que foi recentemente aceito para publicação no The Astrophysical Journal, e aparece on-line . O outro candidato de buraco negro duplo foi relatado em um artigo de Ellison et al., Que foi publicado na edição de setembro de 2017 das Mensagens Mensais da Royal Astronomical Society e aparece em linha .

sábado, 21 de outubro de 2017

VIDA SUB AQUÁTICA EM GANIMEDES; É CONFIRMADO O MAIOR OCEANO DO SISTEMA SOLAR

vida em ganimedes? o maior oceano do Sistema Solar
"Acredita-se que o oceano de Ganimedes contenha mais água do que o de Europa", disse Olivier Witasse, cientista e projetista da futura missão JUICE, da Agência Espacial Europeia (ESA). "Seis vezes mais água no oceano de Ganimedes do que no oceano da Terra, e três vezes mais do que em Europa".
Em março de 2016, o Telescópio Espacial Hubble da NASA revelou as melhores evidências de um oceano subterrâneo de água salgada em Ganimedes, a maior lua de Júpiter, que por sua vez, é maior do que Mercúrio e não muito menor do que Marte.
Identificar a água líquida é crucial na busca de mundos habitáveis ​​além da Terra, e consequentemente, pela busca da vida como a conhecemos.
"Esta descoberta é um marco significativo, destacando o que apenas o Hubble consegue fazer", disse John Grunsfeld, administrador assistente da Direção de Missão de Ciência da NASA. "Nos seus 25 anos em órbita, o Hubble fez muitas descobertas científicas em nosso Sistema Solar. Um oceano profundo abaixo da crosta gelada de Ganimedes abre novas possibilidades empolgantes para a vida além da Terra".
Ilustração mostra camadas internas de Ganimedes
Ilustração mostra camadas internas de Ganimedes
Créditos: NASA / ESA         /         Adaptação e Tradução: Galeria do Meteorito
Ganimedes é a maior lua do nosso Sistema Solar e a única que possui seu próprio campo magnético, responsável pela criação de auroras polares (que são faixas de gás eletrificado incandescente e quente que circundam os polos da lua). Por estar muito próximo de Júpiter, Ganimedes também sofre os efeitos de seu potente campo magnético. Ou seja, quando o campo magnético de Júpiter muda, as auroras em Ganimedes também mudam, "balançando" para frente e para trás.
Ganimedes é eclipsado pela lua Europa, que também possui um oceano subterrâneo e será estudada de perto pela missão Europa Clipper em meados de 2020.
Missão a Lua Europa
Missão a Lua Europa
Ilustração artística de um orbitador em Europa, que possivelmente será enviado em meados de 2020.
Créditos: NASA / JPL-Caltech
As auroras que ocorrem em Ganimedes, detectadas pelo Hubble, revelam oscilações no campo magnético da lua, que são explicadas pelo calor interno causado pela maré de um oceano a centenas de quilômetros abaixo da superfície.
A missão JUICE irá sobrevoar algumas luas geladas a distâncias entre 1000 e 200 quilômetros, e irá orbitar Ganimedes por nove meses.
O orbitador conseguirá distinguir o que é gelo é o que é material rochoso, permitindo a detecção de reservatórios enterrados. "Ver o subsolo dessas luas com o radar será como uma viagem no tempo, o que irá ajudar a determinar a evolução geológica desses mundos enigmáticos", disse Olivier Witasse.
No caminho, a nave espacial fará vários sobrevoos em outra lua que também deve ter um oceano subterrâneo: Calisto. "Nós pensamos que Calisto também abriga um oceano subterrâneo, mas os dados disponíveis não estão claros", disse Olivier Witasse. "O que esperamos fazer é verificar se há um oceano ou não, e se sim, qual sua profundidade".
A agência espacial russa (Roscosmos) está estudando o envio de um pousador que aterrissaria em Ganimedes, e que seria enviado junto com JUICE. Essa missão, chamada Laplace-P, buscaria, sobretudo, indícios de vida em Ganimedes.
Primeiramente, a humanidade se surpreendeu com a exploração lunar e marciana... em seguida, asteroide e cometas foram visitados... agora chegou a vez dos satélites naturais do Sistema Solar, que diga-se de passagem, são (provavelmente) os objetos mais promissores de todo o nosso sistema.
Imagens: (capa-ilustração/DeviantArt/Justtv23) / NASA / ESA / Galeria do Meteorito

quinta-feira, 19 de outubro de 2017

JAMES WEBB BUSCARÁ SINAIS DE VIDA EXTRATERRESTRE NO SISTEMA SOLAR

james webb buscará sinais de vida extraterrestre no sistema solar
Conheça as duas luas escolhidas para serem observadas pelo poderoso telescópio espacial!
O telescópio espacial James Webb, que será lançado em breve, dará uma grande atenção para dois dos principais candidatos para hospedar vida extraterrestre no Sistema Solar: Encélado e Europa, informou a NASA.
Acredita-se que tanto Europa (lua de Júpiter) quanto Encélado (lua de Saturno) possuem oceanos subterrâneos de água líquida, logo abaixo das espessas camadas de gelo. Ambas apresentam gêiseres que liberam jatos líquidos na atmosfera desses mundos, o que poderiam também fornecer uma fonte de calor e nutrientes para algumas formas de vida, segundo os cientistas.
"Nós escolhemos essas duas luas por causa do potencial para exibir assinaturas químicas de interesse astrobiológico", disse Heidi Hammel, vice-presidente executiva da Associação de Universidades de Pesquisa em Astronomia (AURA), que está liderando os esforços para usar o telescópio em estudos de objetos do Sistema Solar.
O telescópio espacial James Webb, apelidado de "Webb", irá capturar a luz infravermelha, que pode ser usada para identificar calor. Os olhos humanos não conseguem enxergar esse nível de onda. Os pesquisadores esperam que Webb possa ajudar a identificar as regiões nas superfícies dessas luas onde a atividade geológica, como a erupção de plumas, está ocorrendo.
As plumas de Encélado foram estudadas em detalhes pela sonda Cassini. A nave espacial descobriu centenas de plumas e até sobrevoou através de algumas delas, testando sua composição. As plumas de Europa foram vistas pelo Telescópio Espacial Hubble, e os pesquisadores a conhecem muito pouco.
Ilustração da parte interna de Encélado mostrando o oceano de água líquida global entre sua crosta e seu núcleo
Ilustração da parte interna de Encélado mostrando o oceano de água líquida global entre sua crosta e seu núcleo. Créditos: NASA / JPL-Caltech         Edição: Richard Cardial
"Elas são feitas de água gelada? O vapor de água quente está sendo liberado? Qual é a temperatura das regiões ativas e da água ejetada?" Questiona Geronimo Villanueva, cientista principal da futura missão de Webb nas observações de Europa e Encélado. "As observações do telescópio Webb nos permitirão abordar essas questões com precisão, e precisão sem precedentes."
As observações de Webb ajudarão a abrir caminho para a missão Europa Clipper, uma missão orbital de 2 bilhões de dólares, que terá como destino a lua gelada de Júpiter. Programada para ser lançada em meados de 2020, a Europa Clipper buscará sinais de vida em Europa. As observações com o telescópio Webb podem identificar áreas de interesse para a missão Europa Clipper.
Hubble e James Webb - comparação
Comparação entre os telescópios espaciais Hubble (esquerda) e James Webb (direita).
Créditos: NASA / divulgação
Os cientistas não sabem com que frequência esses gêiseres ocorrem, e o tempo limitado de observação com Webb pode não coincidir com um deles. O telescópio pode detectar elementos orgânicos, como carbono, que são essenciais para a formação da vida como a conhecemos. No entanto, Villanueva advertiu que Webb não tem o poder de detectar diretamente formas de vida nas plumas, mas sim suas evidências.
O telescópio James Webb está programado para ser lançado em 2018, e orbitará o Sol no ponto de Lagrange L2, que fica a cerca de 1,7 milhões de km mais longe do Sol do que a Terra. O telescópio proporcionará observações de alta resolução tanto do Universo distante quando do nosso próprio Sistema Solar. Cientistas de todo o mundo estão enviando sugestões de objetos que deveriam ser observados pelo poderoso James Webb, e graças a isso, Europa e Encélado são dois que já estão com suas observações garantidas!
Imagens: (capa-ilustração/divulgação) / NASA / JPL-Caltech / Richard Cardial / divulgação

terça-feira, 17 de outubro de 2017

ENCONTRADO UM OBJETO ÚNICO NO CINTURÃO DE ASTEROIDES

288P - objeto único no Cinturão de Asteroides
288P - objeto único no Cinturão de Asteroides 
Mesmo após quase 30 anos de serviço, o Hubble continua realizando descobertas intrigantes, dentro e fora do nosso Sistema Solar!
Recentemente, uma equipe internacional de astrônomos, liderada pelo Instituto Max Planck para Pesquisa do Sistema Solar, descobriu um objeto único no Cinturão de Asteroides - um asteroide binário conhecido como 288P - que também se comporta como um cometa. De acordo com a equipe, esse asteroide binário sublima à medida que se aproxima do Sol, criando caudas semelhantes a dos cometas.
O estudo (publicado na revista Nature) só foi possível graças ao Telescópio Espacial Hubble e sua versatilidade na observação do espaço. A equipe foi liderada por Jessica Agarwal, do Instituto Max Planck para Pesquisa do Sistema Solar, e incluiu membros do Instituto de Ciências do Telescópio Espacial, do Laboratório Lunar e Planetário da Universidade do Arizona, do Laboratório de Física Aplicada da Universidade Johns Hopkins (JHUAPL) e da Universidade da Califórnia, em Los Angeles.
Usando o telescópio Hubble, a equipe observou primeiramente o objeto 288P em setembro de 2016 durante sua máxima aproximação com a Terra. As imagens revelaram que esse objeto não era um único asteroide, mas sim dois, de tamanho e massa semelhantes que se orbitam a uma distância de cerca de 100 km. Além disso, a equipe também notou uma atividade contínua e inesperada no sistema binário.
Como Jessica Agarwal explicou em uma declaração de imprensa, isso faz de 288P o primeiro asteroide binário conhecido que também é classificado como um cometa. "Detectamos fortes indícios da sublimação de gelo de água devido ao aumento do aquecimento solar - semelhante à forma como a cauda de uma cometa é criada", disse ela. Além de ser uma surpresa agradável, essas descobertas também são muito significativas para o estudo do Sistema Solar.
Uma vez que apenas alguns objetos deste tipo são conhecidos, 288P é um alvo extremamente importante para futuros estudos de asteroides. Ele é único! Outros asteroides binários que foram observados eram diferentes em tamanho e massa, tinham órbitas menos excêntricas e não formavam caudas semelhantes a de cometas.
A equipe concluiu que 288P já existe como um sistema binário há pelo menos 5.000 anos e deve ter acumulado gelo logo nos primórdios do Sistema Solar. "O cenário de formação mais provável de 288P é uma separação devido à rotação rápida. Depois disso, os dois fragmentos podem ter sido separados ainda mais por conta da sublimação", disse Jessica Agarwal.
A equipe do Hubble e a ESA criaram um vídeo ilustrativo revelando as características de asteroide e de cometa do objeto 288P. Quando nos distanciamos dele, por exemplo, fica evidente sua sublimação, ou seja, sua aparência de cometa:
Por ser tão diferente de outros asteroides binários, os cientistas são forçados a se perguntar se suas propriedades únicas são meras coincidências. Por ter sido encontrado por acaso, é possível que outros binários semelhantes sejam encontrados em breve.
"Precisamos de mais trabalhos teóricos e observacionais, bem como mais objetos semelhantes ao 288P, para encontrar uma resposta a esta questão", disse Jessica Agarwal. "Enquanto isso, este asteroide binário exclusivo assegura aos astrônomos muitas oportunidades interessantes para estudar a origem e a evolução dos asteroides em órbita entre Marte e Júpiter."
Estudar e compreender asteroides que se comportam como cometas é crucial para a compreensão de como o Sistema Solar se formou, e como ocorre sua evolução. Estudar a população do Cinturão Principal também nos ajuda a entender como os planetas se formaram há bilhões de anos e como a água foi distribuída pelo Sistema Solar. Com isso, teremos uma dica de como e onde a vida começou a surgir na Terra, ou até mesmo em outros mundos...
Imagens: (capa-ilustração/Hubble/ESA) / Hubble / ESA / divulgação

domingo, 15 de outubro de 2017

V745 Sco: DUAS ESTRELAS TRES DIMENSÕES E MUITA ENERGIA


Um novo modelo 3D de uma explosão do sistema V745 Sco ajuda os astrônomos a aprender mais sobre esse sistema volátil.
V745 Sco é um sistema binário onde um gigante vermelho e uma estrela anã branca estão em uma órbita muito próxima uma em torno da outra.
As intensas forças gravitacionais da anã branca puxam as camadas externas do anão vermelho para a superfície da estrela menor, provocando explosões.
Os astrônomos observaram o V745 Sco cerca de duas semanas após a explosão mais recente em 2014 com a Chandra, permitindo que eles gerassem este novo modelo 3D.
Durante décadas, os astrônomos sabem sobre explosões irregulares do sistema de estrelas duplas V745 Sco, que está localizado a cerca de 25 mil anos-luz da Terra. Os astrônomos foram surpreendidos quando as explosões anteriores deste sistema foram vistas em 1937 e 1989. Quando o sistema entrou em erupção em 6 de fevereiro de 2014, os cientistas estavam prontos para observar o evento com um conjunto de telescópios, incluindo o Observatório de raios-X Chandra da NASA .
V745 Sco é um sistema de estrela binária que consiste em uma estrela gigante vermelha e uma anã branca trancada pela gravidade. Esses dois objetos estelares orbitam tão próximos um do outro que as camadas externas do gigante vermelho são afastadas pela intensa força gravitacional da anã branca. Este material gradualmente cai na superfície da anã branca. Ao longo do tempo, material suficiente pode se acumular na anã branca para desencadear uma explosão termonuclear colossal, causando um dramático brilho do binário chamado nova . Os astrônomos viram a V745 Sco desaparecer por um fator de mil luz óptica ao longo de cerca de 9 dias.
Os astrônomos observaram o V745 Sco com Chandra um pouco mais de duas semanas após a explosão de 2014. A sua principal descoberta foi que a maioria do material ejetado pela explosão estava se movendo em nossa direção. Para explicar isso, uma equipe de cientistas do INAF-Osservatorio Astronomico de Palermo, da Universidade de Palermo e do Harvard-Smithsonian Center for Astrophysics construiu um modelo de computador tridimensional (3D) da explosão e ajustou o modelo até ele explicou as observações. Neste modelo, eles incluíam um grande disco de gás frio em torno do equador do binário causado pela anã branca puxando um vento de gás que circulava longe do gigante vermelho.
Os cálculos do computador mostraram que a onda de explosão da nova explosão e o material ejetado provavelmente foram concentrados ao longo dos pólos norte e sul do sistema binário. Esta forma foi causada pela onda de explosão que bateu no disco de gás fresco ao redor do binário. Essa interação fez com que a onda de explosão e o material ejetado diminuíssem ao longo da direção desse disco e produziriam um anel em expansão de gás emissor de raios-X quente. Os raios-X do material que se afastava de nós foram principalmente absorvidos e bloqueados pelo material se movendo em direção à Terra, explicando por que parecia que a maioria do material estava se movendo em nossa direção.
Na figura (foto acima) mostrando o novo modelo 3D da explosão, a onda de explosão é amarela, a massa ejetada pela explosão é roxa e o disco do material mais frio, que é principalmente intocado pelos efeitos da onda explosiva, é azul. A cavidade visível no lado esquerdo do material ejetado (veja a versão rotulada) é o resultado da destruição da superfície da anã branca sendo mais lenta quando atinge o gigante vermelho. Abaixo está uma imagem óptica do Siding Springs Observatory na Austrália.
Óptico
Óptico
Uma quantidade extraordinária de energia foi liberada durante a explosão, equivalente a cerca de 10 milhões de trilhões de bombas de hidrogênio. Os autores estimam que o material que pesava cerca de um décimo da massa da Terra foi ejetado.
Enquanto esse ermo de tamanho estelar era impressionante, a quantidade de massa expulsada ainda era muito menor do que a quantidade que os cientistas calculam é necessária para desencadear a explosão. Isso significa que, apesar das explosões recorrentes, uma quantidade substancial de material está acumulando na superfície da anã branca. Se material suficiente acumulado, a anã branca pode sofrer uma explosão termonuclear e ser completamente destruída. Os astrônomos usam essas chamadas supernovas tipo Ia como marcadores de distância cósmicos para medir a expansão do Universo.
Os cientistas também conseguiram determinar a composição química do material expulso pela nova. A análise desses dados implica que a anã branca é composta principalmente por carbono e oxigênio.
Também foi criada uma impressão 3D do modelo (foto abaixo). Esta impressão em 3D foi simplificada e impressa em duas partes, a onda de explosão (mostrada aqui em cinza) e o material ejetado (mostrado aqui em amarelo).
V745
V745
Um artigo descrevendo esses resultados foi publicado nos Avisos Mensais da Royal Astronomical Society e está disponível on-line .
Os autores são Salvatore Orlando do INAF-Osservatorio Astronomico de Palermo na Itália, Jeremy Drake do Harvard-Smithsonian Center for Astrophysics em Cambridge, MA e Marco Miceli da Universidade de Palermo.
O Centro de Vôos Espaciais Marshall da Nasa em Huntsville, Alabama, administra o programa de Chandra para a Direcção da Missão de Ciências da NASA em Washington. O Smithsonian Astrophysical Observatory em Cambridge, Massachusetts, controla a ciência e operações de vôo de Chandra.

sexta-feira, 13 de outubro de 2017

OBSERVATÓRIO ESPACIAL INDIANO DIVULGA FOTO DE AGLOMERADO DE ESTRELAS EM GALÁXIA IRREGULAR


A imagem foi adquirida pelo Astrosat, que é o primeiro observatório espacial indiano que foi lançado dois anos atrás. WLM, que está localizada a cerca de 3 milhões de anos-luz de distância da Terra.
Os cientistas do Instituto Indiano de Astrofísica participaram desse registro que mostra o aglomerado de estrelas com as estrelas coloridas em azul e em amarelo de acordo com suas características.
O cientista Annapurni Subramaniam do Instituto Indiano de Astrofísica, em Bengaluru e sua estudante Chayan Mondal, usaram o telescópio de imageamento ultravioleta a bordo do Astrosat para fazer a imagem do aglomerado de estrelas mais jovem da WLM.
Eles querem estudar e entender como essa pequena galáxia consegue formar novas estrelas de forma tão eficiente, apesar de ter pouca massa, ela é milhares de vezes menos massiva que a Via Láctea, e pouca metalicidade.
De forma impressionante a galáxia forma estrelas numa taxa 12 vezes maior que a Via Láctea. Os astrônomos ainda não possuem um modelo que explique de forma definitiva como a WLM faz isso.
Os astrônomos do Instituto Indiano de Astrofísica estão analisando os dados que eles coletaram atrás dessas respostas.
O telescópio do observatório espacial que trabalha com múltiplos comprimentos de onda que foi lançado em Setembro de 2015, registrou a imagem do aglomerado de estrelas da galáxia que fica na constelação de Cetus.
O observatório espacial indiano tem cinco instrumentos a bordo – o Telescópio de Imageamento no Ultra Violeta, o Telescópio de Raios-X Soft, o Contador Proporcional de Raios-X de Grande Área, o Imageador de Cádmio-Zinco-Telúrio e o Monitor de Escaneamento do Céu.
Para quem quiser seguir os avanços do AstroSat, a comunidade de cientistas que trabalha com o telescópio espacial irá manter a chamada AstroSat Picture of The Month, como uma forma de divulgar o trabalho. Acesse aqui:

Fonte:
http://timesofindia.indiatimes.com/home/science

quarta-feira, 11 de outubro de 2017

O ÚLTIMO RETRATO DE CORPO INTEIRO DE SATURNO FEITO PELA SONDA CASSINI


Como a sonda Cassini deveria se despedir de Saturno? Três dias antes de mergulhar em Saturno, a sonda Cassini passou pelo lado noturno de Satruno com suas câmeras bem ligadas e fazendo imagens maravilhosas. 
Trinta e seis dessas imagens foram então integradas para formar esse belo mosaico, que foi processado por um cientista cidadão e então mostra o último retrato completo de Saturno feito pela sonda nos seus 13 anos de trabalho no planeta. O Sol está acima do frame, fazendo com que Saturno gere uma sombra escura nos seus enormes anéis. Essa posição da sombra não pode ser imageada da Terra, e não será nunca vista até que uma sonda lançada da Terra passe ou entre em órbita de Saturno. Os dados e as imagens obtidas pela sonda Cassini durante o seu mergulho em Saturno em 15 de Setembro de 2017 continuam sendo estudados e analisados.
Fonte:
https://apod.nasa.gov/apod/ap170926.html

terça-feira, 10 de outubro de 2017

SONDA OSIRIS-REX FAZ IMAGEM DO SISTEMA TERRA-LUA DURANTE A ASSISTÊNCIA GRAVITACIONAl


A primeira imagem feita pela sonda OSIRIS-REx da NASA depois de completar sua manobra de assistência gravitacional pela Terra, em 22 de Setembro, mostra toda a grandiosidade do nosso planeta. 
A imagem foi feita no dia 22 de Setembro de 2017 a uma distância de 110 mil km de distância da Terra. A imagem foi rotacionada da imagem original para manter o polo norte na parte superior da imagem. A região de Baja Califórnia pode ser vista acima e a direita do centro da imagem. As nuvens cobrindo o Oceano Pacífico dominam essa imagem, mas o Furacão Maria e a parte restante do Furacão Jose, podem ser vistos na parte extrema direita da imagem. Essa imagem foi adquirida pela NavCam 1, um imageador preto e branco que é uma das 3 câmeras que fazem parte do TAGCAMS, que por sua vez, é parte do sistema de guiagem, navegação e controle da sonda OSIRIS-REx. As imagens da NavCam serão usadas para rastrear o campo de estrelas e feições na superfície do asteroide Bennu para determinar a posição da sonda durante as operações.
Essa outra imagem em preto e branco mostra o sistema Terra-Lua e foi feita no dia 25 de Setembro de 2017 pela NavCam 1 também. Essa imagem foi feita a cerca de 1297000 quilômetros da Terra e 1185000 quilômetros da Lua e mostra a separação de 401200 quilômetros dos dois objetos no momento da imagem. Essa imagem fez parte do conjunto de imagens feitas pela sonda OSIRIS-REx, durante a sua manobra de assistência gravitacional realizada pelo planeta Terra no dia 22 de Setembro de 2017.
Fonte:
https://www.nasa.gov/feature/goddard/2017/osiris-rex-snaps-pictures-of-earth-and-the-moon

sábado, 7 de outubro de 2017

MUNDO INFERNAL COM CÉU DE TITANIO


O VLT do ESO faz a primeira detecção de óxido de titânio num exoplaneta
Astrônomos usaram o Very Large Telescope do ESO para detectar pela primeira vez óxido de titânio na atmosfera de um exoplaneta. Esta descoberta feita em torno do planeta do tipo Júpiter quente chamado WASP-19b fez uso do poder do instrumento FORS2, tendo-nos fornecido informações únicas sobre a composição química e a estrutura de temperatura e pressão na atmosfera deste mundo quente e incomum. Os resultados foram publicados hoje na revista Nature.
Uma equipe de astrônomos liderada por Elyar Sedaghati, um bolsista do ESO recentemente graduado pela TU Berlim, examinou a atmosfera do exoplaneta WASP-19b com o maior detalhe conseguido até hoje. Este planeta notável tem aproximadamente a mesma massa de Júpiter, mas encontra-se tão perto da sua estrela hospedeira que completa uma órbita em apenas 19 horas. Estima-se que a sua atmosfera tenha uma temperatura de cerca de 2000 graus Celsius.
Quando WASP-19b passa em frente da sua estrela hospedeira, parte da luz estelar atravessa a atmosfera do planeta, deixando assinaturas sutis na luz que chega eventualmente à Terra. Ao usar o instrumento FORS2 montado no Very Large Telescope, a equipe conseguiu analisar cuidadosamente esta luz e deduzir que a atmosfera contém pequenas quantidades de óxido de titânio, água e vestígios de sódio, além de uma forte neblina global de dispersão.
“A detecção de tais moléculas não é fácil,” explica Elyar Sedaghati, que passou dois anos como estudante do ESO trabalhando neste projeto. “Além de dados de qualidade excepcional, precisamos ainda realizar uma análise muito sofisticada. Usamos um algoritmo que explora muitos milhões de espectros, que cobrem uma grande variedade de composições químicas, temperaturas e propriedades de nuvens ou neblinas, de modo a tirar as nossas conclusões.”
O óxido de titânio é raramente visto na Terra. Sabe-se que existe em atmosferas de estrelas frias. Nas atmosferas de planetas quentes como WASP-19b, esta molécula atua como um absorvedor de calor. Se estiverem presentes em grandes quantidades, estas moléculas impedem o calor de entrar ou escapar da atmosfera, levando a uma inversão térmica — a temperatura apresenta-se mais elevada na atmosfera superior e mais baixa na inferior, ou seja, o contrário do que acontece numa situação normal. O ozônio desempenha um papel semelhante na atmosfera terrestre, causando uma inversão na estratosfera.
“A presença de óxido de titânio na atmosfera de WASP-19b tem efeitos substanciais na estrutura da temperatura atmosférica e na circulação,” explica Ryan MacDonald, outro membro da equipe e astrônomo da Universidade de Cambridge, Reino Unido. ”Conseguir estudar exoplanetas com este nível de detalhe é muito promissor e excitante.”
Os astrônomos coletaram observações de WASP-19b durante um período de mais de um ano. Ao medir as variações relativas do raio do planeta em diferentes comprimentos de onda da luz que passa através da atmosfera do exoplaneta e comparando-as aos modelos atmosféricos, os pesquisadores puderam extrapolar diferentes propriedades, tais como o conteúdo químico da atmosfera do exoplaneta.
Esta nova informação sobre a presença de óxidos de metal, tais como o óxido de titânio e outras substâncias, permitirá uma modelagem muito melhor das atmosferas de exoplanetas. Olhando para o futuro, quando os astrônomos conseguirem observar atmosferas de planetas possivelmente habitáveis, estes modelos melhorados darão uma ideia muito melhor de como interpretar tais observações.
“Esta importante descoberta é o resultado de uma renovação do instrumento FORS2, feita exatamente para este efeito,” acrescenta o membro da equipe Henri Boffin do ESO, que liderou o projeto de renovação. “Desde essa altura, o FORS2 tornou-se o melhor instrumento para realizar este tipo de estudos a partir do solo.”

quinta-feira, 5 de outubro de 2017

RAIOS-X REVELAM O TEMPERAMENTO DAS POSSÍVEIS ESTRELAS EM RELAÇÃO A HOSPEDGEM DA VIDA


Os raios-X podem fornecer informações valiosas sobre se um sistema estelar será hospitaleiro na vida em planetas.
Atividade magnética do espelho estelar dos raios-X, que pode produzir radiações e erupções energéticas que podem afetar os planetas circundantes.
Os pesquisadores usaram Chandra e XMM-Newton para estudar 24 estrelas como o Sol que tinha pelo menos um bilhão de anos.
O último estudo indica que as estrelas mais antigas do sol se acalmaram relativamente rapidamente, aumentando as perspectivas de vida a desenvolver em planetas em torno deles.
Um novo estudo usando dados do Observatório de Raio-X de Chandra da NASA e XMM-Newton da ESA sugere que os raios X emitidos pela estrela hospedeira de um planeta podem fornecer pistas críticas para o quão hospitaleiro um sistema estelar poderia ser. Uma equipe de pesquisadores olhou para 24 estrelas semelhantes ao Sol, cada um com pelo menos um bilhão de anos, e como seu brilho de raios X mudou ao longo do tempo.
Uma vez que a atividade magnética espelhada dos raios-X reflete, as observações de raios X podem dizer aos astrônomos sobre o ambiente de alta energia ao redor da estrela. No novo estudo, os dados de raios-X de Chandra e XMM-Newton revelaram que estrelas como o Sol e seus primos menos maciços se acalmam surpreendentemente rapidamente após uma turbulenta juventude.
A ilustração desse artista descreve uma dessas estrelas relativamente semelhantes, parecidas com o sol, com um planeta em órbita ao redor. A grande área escura é um "furo coronal", um fenômeno associado a baixos níveis de atividade magnética. A caixa de inserção mostra os dados de Chandra de um dos objetos observados, uma estrela de dois bilhões de anos chamada GJ 176, localizada a 30 anos-luz da Terra.
Para entender quão rápido o nível de atividade magnética estelar muda ao longo do tempo, os astrônomos precisam de idades precisas para muitas estrelas diferentes. Esta é uma tarefa difícil, mas novas estimativas de idade precisas recentemente se tornaram disponíveis a partir de estudos da forma como uma estrela pulsa usando as missões da CoRoT da Kepler e da ESA da NASA. Estas novas estimativas de idade foram utilizadas para a maioria das 24 estrelas estudadas aqui.
Os astrônomos observaram que a maioria das estrelas são muito magneticamente ativas quando são jovens , já que as estrelas estão girando rapidamente. À medida que a estrela rotativa perde energia ao longo do tempo, a estrela gira mais devagar e o nível de atividade magnética, juntamente com a emissão de raios-X associada, cai.
Embora não seja certo por que as estrelas mais antigas se estabelecem relativamente rapidamente, os astrônomos têm idéias que estão explorando. Uma possibilidade é que a diminuição da taxa de rotação das estrelas mais antigas ocorre mais rapidamente do que para as estrelas mais jovens. Outra possibilidade é que o brilho do raio-X declina mais rapidamente com o tempo para as estrelas mais velhas e mais lentas do que as estrelas mais novas.
Um documento descrevendo esses resultados foi aceito para publicação nos Avisos Mensais da Royal Astronomical Society, e está disponível on-line . Os outros co-autores são Victor Silva Aguirre da Universidade de Aarhus na Dinamarca e Scott Wolk da CfA.
O Centro de Vôos Espaciais Marshall da NASA em Huntsville, Alabama, administra o programa de Chandra para a Direcção da Missão de Ciências da NASA em Washington. O Smithsonian Astrophysical Observatory em Cambridge, Massachusetts, controla a ciência e operações de vôo de Chandra.

terça-feira, 3 de outubro de 2017

ALMA DESCOBRE RESERVATÓRIOS DE GÁS FRIO ESCONDIDOS EM GALÁXIAS DISTANTES

 
O ALMA detectou reservatórios turbulentos de gás frio em torno de galáxias distantes com formação estelar explosiva. Ao detectar CH+ pela primeira vez, este trabalho abre uma nova janela na exploração de uma época crítica de formação estelar no Universo. A presença deste íon lança uma nova luz sobre como é que as galáxias conseguem estender o seu período de formação estelar rápida. Os resultados foram publicados hoje na revista Nature.
Uma equipe liderada por Edith Falgarone (Ecole Normale Supérieure e Observatoire de Paris, França) utilizou o Atacama Large Millimeter/submillimeter Array (ALMA) para detectar assinaturas do íon de hidreto de carbono CH+ em galáxias distantes com formação estelar explosiva. O grupo de pesquisadores identificou os fortes sinais de CH+ em cinco das seis galáxias estudadas, incluindo a Pestana Cósmica (eso1012). Este trabalho fornece novas informações que ajudam os astrônomos a compreender melhor o crescimento das galáxias e como é que o meio que envolve estes objetos alimenta a formação estelar.

“O CH+ é um íon especial. Precisa de muita energia para se formar e é muito reativo, o que significa que o seu tempo de vida é muito curto e não pode ser transportado para muito longe. 
Por isso, o CH+ mostra-nos como é que a energia flui nas galáxias e no meio ao seu redor” diz Martin Zwaan, astrônomo do ESO, que contribuiu para o artigo científico que descreve os resultados.
Para percebermos como é que o CH+ rastreia a energia podemos fazer uma analogia com estar num barco num oceano tropical durante uma noite escura e sem Lua. Quando as condições são apropriadas, o plâncton fluorescente pode iluminar a região em redor do barco à medida que este avança. A turbulência causada pelo barco deslizando na água excita o plâncton, que emite luz, revelando assim a presença de regiões turbulentas na água escura por baixo de nós. Uma vez que o CH+ se forma exclusivamente em pequenas áreas onde os movimentos turbulentos do gás se dissipam, a sua detecção rastreia essencialmente a energia em escala galáctica.
O CH+ observado revela densas ondas de choque, alimentadas por ventos galácticos rápidos e quentes que têm origem nas regiões de formação estelar das galáxias. Estes ventos fluem ao longo da galáxia e empurram o material para fora desta, no entanto os seus movimentos turbulentos são tais que parte deste material pode ser de novo capturado pela atração gravitacional da própria galáxia. A matéria aglomera-se em enormes reservatórios turbulentos de gás frio de baixa densidade, estendendo-se mais de 30 mil anos-luz a partir da região de formação estelar da galáxia.
“Com o CH+ aprendemos que a energia está armazenada no interior de vastos ventos do tamanho de galáxias e que termina como movimentos turbulentos em reservatórios invisíveis de gás frio que rodeiam a galáxia,” disse Falgarone, autor principal do novo artigo científico. “Os nossos resultados desafiam a teoria de evolução galáctica. Ao dar origem a turbulência nos reservatórios, estes ventos galácticos aumentam a fase de formação estelar explosiva, em vez de a extinguirem.”
A equipe determinou que os ventos galácticos não podem por si próprios alimentar os reservatórios gasosos recentemente descobertos, sugerindo que a massa vem de fusão ou acreção galácticas de correntes de gás escondidas, como previsto pela atual teoria.
“Esta descoberta representa um enorme passo em frente na nossa compreensão de como o fluxo de material é regulado em torno das galáxias com a mais intensa formação estelar explosiva do Universo primordial,” disse o Diretor de Ciência do ESO, Rob Ivison, co-autor do novo artigo. “Este trabalha demonstra bem o que pode ser alcançado quando cientistas de uma variedade de áreas se juntam para explorar as capacidades de um dos mais poderosos telescópios do mundo.”

domingo, 1 de outubro de 2017

OS CONTATOS IMEDIATOS DE ESTRELAS COM O NOSSO SISTEMA SOLAR


Os movimentos de mais de 300 mil estrelas pesquisadas pelo satélite GAIA da ESA revelam que raros encontros com o nosso Sol podem perturbar a nuvem de cometas localizada nos confins do nosso Sistema Solar, e enviar alguns deles em direção à Terra num futuro distante.
À medida que o Sistema Solar se move através da Via Láctea, e à medida que as outras estrelas também seguem suas trajetórias, encontros próximos entre as estrelas se torna algo inevitável, só lembrando que esse próximo quer dizer muitos trilhões de quilômetros.
Uma estrela, dependendo da sua massa e da sua velocidade, precisaria estar a cerca de 60 trilhões de quilômetros antes de começar a afetar o distante reservatório de cometas do nosso Sistema Solar, a chamada Nuvem de Oort, que acredita-se se estenda a cerca de 15 trilhões de quilômetros do Sol, ou seja, 100 mil vezes a distância da Terra ao Sol.
Só para comparação, o planeta mais externo do Sistema Solar, Netuno, orbita o Sol a uma distância média de 4.5 bilhões de quilômetros, ou seja, 30 vezes a distância entre a Terra e o Sol.
A influência gravitacional das estrelas que passam perto da Nuvem de Oort poderia perturbar a trajetória dos cometas que ali residem, colocando-os numa órbita em direção ao Sistema Solar interno.
Acredita-se que é essa interação de estrelas passando perto da nuvem de Oort que faça com que alguns cometas apareçam no nosso céu a cada centenas de milhões de anos, e essa interação de alguma maneira poderia colocar cometas em rota de colisão com alguns planetas, inclusive a Terra.
Desse modo, entender os movimentos passados e futuro das estrelas é o principal objetivo da missão GAIA, que faz isso coletando dados precisos sobre as posições das estrelas e seus movimentos no decorrer dos seus 5 anos de missão. Depois de 14 meses, o primeiro catálogo com mais de 1 bilhão de estrelas foi lançado, esse catálogo inclui as distâncias e os movimentos pelo céu de mais de 2 milhões de estrelas.
Combinando os novos resultados com informações já existentes, os astrônomos começaram a fazer um estudo detalhado da passagem de estrelas perto do nosso Sol.
Para isso, os movimentos relativos ao Sol de mais de 300 mil estrelas foram rastreados através da galáxia e suas maiores aproximações foram determinadas para um intervalo de tempo de 5 milhões de anos no passado e no futuro.
De todas essas estrelas estudadas, 97 passarão a uma distância de 150 trilhões de quilômetros do Sol, enquanto que 16 chegaram a uma distância de aproximadamente 60 trilhões de quilômetros.
Enquanto essas 16 são consideradas estrelas que passarão relativamente perto do Sol, uma em particular passará bem perto mesmo, a Gliese 710, em 1.3 milhão de anos. A previsão a partir desse estudo é que ela passe a apenas 2.3 trilhões de quilômetros do Sol, ou seja, 16 mil vezes a distância da Terra ao Sol, bem dentro da Nuvem de Oort.
A estrela é bem documentada, e graças aos dados da missão Gaia, a distância desse encontro foi recentemente revisada. Anteriormente, existia 90% de probabilidade da estrela passar entre 3.1 e 13.6 trilhões de quilômetros de distância. Agora, os dados mais precisos sugerem que ela passará entre 1.5 e 3.2 trilhões de quilômetros, sendo que 2.3 trilhões de quilômetros é a distância mais provável.
Além disso, embora a Gliese 710 tenha uma massa de 60% da massa do Sol, ela viaja a uma velocidade muito mais lenta que as demais estrelas, aproximadamente 50 mil km/h, enquanto as demais estrelas viajam a cerca de 100 mil km/h.
A velocidade dessa passagem significa que ela terá um bom tempo para exercer sua influência gravitacional nos corpos da Nuvem de Oort, potencialmente mandando uma chuva de cometas para dentro do Sistema Solar.
Apesar de passar lentamente pela Nuvem de Oort ela ainda aparecerá como o objeto mais brilhante e mais rápido no céu noturno da Terra, durante a sua aproximação máxima.
O último estudo usando medidas feitas pelo Gaia para fazer uma estimativa geral da taxa de encontro estelares, leva em consideração incertezas como a de estrelas que podem não ter sido observadas no catálogo.
Para um intervalo de tempo de 5 milhões de anos no passado e no futuro, a taxa geral de encontro próximo com uma estrela é estimada em cerca de 550 estrelas por milhão de anos, para uma passagem dentro de 150 trilhões de quilômetros, das 20 estrelas chegaram mais perto do que 30 trilhões de quilômetros.
Isso mostra que um potencial encontro próximo pode ocorrer a cada 50 mil anos. É importante notar que não é garantido que uma estrela perturbe de verdade qualquer cometa e que eles entrarão nas regiões mais internas do Sistema Solar, e além disso que a Terra estará na linha de fogo desses cometas.
Todas essas estimativas serão refinadas com futuros dados da missão Gaia. O segundo catálogo está programado para ser lançado em Abril de 2018, contendo a informação de 20 vezes mais estrelas, permitindo a reconstrução em um intervalo de tempo de 25 milhões de anos no passado e no futuro.